skip to main content


Search for: All records

Creators/Authors contains: "Podgrajsek, Eva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2emissions had an average of 25% (range 3%–58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2flux variability were delineated through mutual information analysis. Sample analysis of CO2fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.

     
    more » « less
  2. null (Ed.)
    The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with 2 meteorological stations, 3 thermistor arrays, an infra-red (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 m2 s-3 to 10-6 m2 s-3 for the 0 to 4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (LN) dropped below 4 facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes. 
    more » « less